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Quantum Fluctuations of the Current and Voltage
in Thermal Vacuum State for Mesoscopic
Quartz Piezoelectric Crystal
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The mesoscopic quartz piezoelectric crystal equivalent circuit is quantized by the
method of damped harmonic oscillator quantization. It is shown that, when each branch
is in the thermal vacuum states, the quantum fluctuations of the voltage, and current
of each loop relate with not only the equivalent circuit inherent parameter, but also the
temperature and decay according to exponent along with time.
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1. INTRODUCTION

The quartz piezoelectric crystal named the quartz harmonic oscillator has
been applied to filter and oscillation, etc. With the rapid development of nanoelec-
tronics, the trend toward miniaturization of circuits and components is obvious
more and more. Quantum effects in electronic devices and circuits should be taken
into account when the transport dimension reaches a characteristic dimension.

Recently, the quantum effects of circuit and device have become one of the
hotspot in mesoscopic physics. A lot of literatures (Chen et al., 1995; Fan et al.,
2000, 2002; Ji and Lei, 2001; Li, 2005; Li et al., 1996; Liang and Yuan, 2002; Liu
et al., 2003; Song, 2003a,b; Wang, 2002; Wang et al., 2000a,b; Zhang et al., 2002)
have studied quantum fluctuation of the electric charge, voltage and current in LC,
RLC, capacitance coupling, inductance coupling, LC parallel connection, RLC
series-parallel connection and RLC parallel connection circuits. In this paper, we
shall study quantum fluctuations of the current and voltage in thermal vacuum state
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Fig. 1. Quartz piezoelectric crystal equivalent circuit.

for mesoscopic quartz piezoelectric crystal by the method of damped harmonic
oscillator quantization (Peng, 1980).

2. THE QUANTIZATION OF THE MESOSCOPIC QUARTZ
PIEZOELECTRIC CRYSTAL EQUIVALENT CIRCUIT

Figure 1 stands for the quartz piezoelectric crystal equivalent circuit. It can
be regarded as parallel-board capacitor when crystal is not oscillation, the C0

standing for static capacitance relating with wafer dimension and electrode area.
When crystal is oscillation, the equivalent inductance L stands for mech-

anism oscillation inertia, the equivalent capacitance C stands for wafer spring.
The numerical values of the L and C relating with wafer incision, wafer elec-
trode dimension and shape, the equivalent resistance R stands for friction ullage.
According to Kirchhoff’s Law, the classical equation of motion of the system is

L
d2i

dt2
+ R

di

dt
+

(
1

C0
+ 1

C

)
i = iS(t)

C0
, (1)

where i is the electric current of transflux inductance loop, is(t) is electric current
of message source. Defining u = Ldi

dt
, we have

i̇ = u

L
, u̇ = −R

L
u −

(
1

C0
+ 1

C

)
i + iS(t)

C0
. (2)

From Eq. (2), we obtain

∂i̇

∂i
+ ∂u̇

∂u
= −R

L
,

d

dt
[i, u] = −R

L
[i, u]. (3)

Obviously, when R �= 0, the i and u are not conjugate variable in classical condi-
tions, the common quantum condition must be modified to satisfy the following
damped commutation relation

[i, u] = jh̄τ−2e− R
L

t , (j 2 = −1) (4)
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where τ stands for the unit time constant. We consider the following transforma-
tions

i = Iτ−1e− R
2L

t , u = τ−1

(
U − R

2
I

)
e− R

2L
t . (5)

One has

[I, U ] = j h̄, (6)

where the I and U stand for plural canonical current and plural canonical voltage,
respectively. From Eq. (5), we obtain

İ = U

L
, U̇ = −Lω2I + τ

C0
e

R
2L

t iS(t), (7)

where

ω2 = ω2
0 − R2

4L2
, ω2

0 = 1

L

(
1

C0
+ 1

C

)
.

According to Eq. (7) and canonical Hamiltonian equation

İ = ∂H

∂U
, U̇ = −∂H

∂I
, (8)

we obtain

H = U 2

2L
+ 1

2
Lω2I 2 − τ

C0
e

R
2L

t iS(t)I. (9)

Introducing

A = 1√
2Lωh̄

(LωI + jU ), A+ = 1√
2Lωh̄

(LωI − jU ). (10)

We can prove that

[A,A+] = 1 (11)

The Hamiltonian of this system is

H = h̄ω

(
A+A + 1

2

)
− (A + A+)

√
h̄

2Lω

τ

C0
e

R
2L

t iS(t), (12)

which shows that when the mesoscopic quartz piezoelectric crystal equivalent
circuit is quantized, it is equivalent to quantized harmonic oscillator under the
electrical source.
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3. THERMAL VACUUM STATE

We introduce a relative tilde space besides the Hilbert space in TFD theory
(Umezawa et al., 1982), the direct product space is made up of above two spaces.
Every operators and state in the Hilbert space has corresponding operators and
state in the tilde space. A and A+ have corresponding operators Ã and Ã+ which
obey [

Ã, Ã+] = 1,
[
Ã, A

] = [
Ã, A+] = [

A, Ã+] = [
A+, Ã+] = 0 (13)

Thermal vacuum state |00̃〉 is zero temperature in H–T direct product space, ther-
mal vacuum state can be obtained by thermal canonical Bogoliubov commutation
expressing with T(θ ). We get ∣∣00̃

〉
T

= T (θ )
∣∣00̃

〉
(14)

where |00̃〉T stands for thermal vacuum state. T (θ ) = e−θ(AÃ−A+Ã+), the θ relates
with count average thermal particle amount n0, n0 = sinh2θ , we obtain relation of
n0 and temperature by Boson–Einstein distribution

n0 = 1

eh̄ω/kBT − 1
, (15)

where kB is Boltzmann constant. Thermal destruction and creation operator A(θ ),
A+(θ ) are

A(θ ) = T (θ )AT +(θ ) = cosh θA − sinh θÃ+, (16a)

A+(θ ) = T (θ )A+T +(θ ) = cosh θA+ − sinh θÃ. (16b)

Where we have used relation eBAe−B = A + [B,A] + 1
2! [B, [B,A]] +

1
3! [B, [B, [B,A]]] + · · ·. From Eqs. (10) and (16), we obtain easily

I (θ ) =
√

h̄

2Lω

[
cosh θ (A + A+) − sinh θ

(
Ã + Ã+)]

, (17a)

U (θ ) = 1

j

√
Lωh̄

2

[
cosh θ (A − A+) + sinh θ

(
Ã − Ã+)]

. (17b)

Therefore, we have

T

〈
00̃

∣∣ I (θ )
∣∣00̃

〉
T

= 0, (18a)

T

〈
00̃

∣∣ I 2(θ )
∣∣00̃

〉
T

= h̄

2Lω
(2n0 + 1), (18b)

T

〈
00̃

∣∣U (θ )
∣∣00̃

〉
T

= 0, (18c)
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T

〈
00̃

∣∣ U 2(θ )
∣∣00̃

〉
T

= Lωh̄

2
(2n0 + 1). (18d)

4. THE QUANTUM FLUCTUATIONS OF MESOSCOPIC QUARTZ
PIEZOELECTRIC CRYSTAL IN THE THERMAL VACUUM STATES

When electrical source is switched off, iS(t) = 0, the quantum fluctuations
of the voltage and current of equivalent circuit each loop in the thermal vacuum
states |00̃〉T are researched.

4.1. The Quantum Fluctuations of the Voltage and Current of Inductance L

From Eqs. (5), (18), (11), and (13), we obtain

T 〈i〉T = 0, T 〈i2〉T = h̄

2Lω
τ−2e− R

L
t (2n0 + 1); (19a)

T 〈u〉T = 0, T 〈u2〉T = Lh̄

2ω
ω2

0τ
−2e− R

L
t (2n0 + 1). (19b)

Therefore, the quantum fluctuations of the voltage and current of inductance L
are

T

〈
(�i)2

〉
T

= h̄

2Lω
τ−2e− R

L
t (2n0 + 1), (20a)

T

〈
(�u)2

〉
T

= Lh̄

2ω
ω2

0τ
−2e− R

L
t (2n0 + 1). (20b)

Substituting Eq. (15) into Eq. (20), we obtain

T 〈(�i)2〉T = h̄

2Lω
τ−2e− R

L
t coth

(
h̄ω

2kBT

)
, (21a)

T 〈(�u)2〉T = Lh̄

2ω
ω2

0τ
−2e− R

L
t coth

(
h̄ω

2kBT

)
. (21b)

So the uncertainty relation is

T 〈(�i)2〉T · T 〈(�u)2〉T = h̄2

4

1

1 − R2C0C/[4L(C0 + C)]
τ−4 e− 2R

L
t coth2

(
h̄ω

2kBT

)
.

(22)

When T → 0, coth
(

h̄ω
2kBT

)
→ 1, we obtain

〈(�i)2〉 = h̄

2Lω
τ−2 e− R

L
t , (23a)

〈(�u)2〉 = Lh̄

2ω
ω2

0τ
−2 e− R

L
t . (23b)
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〈(�i)2〉〈(�u)2〉 = h̄2

4

1

1 − R2C0C/[4L(C0 + C)]
τ−4 e− 2R

L
t . (24)

which reduces to the results of Li (2005).

4.2. The Quantum Fluctuations of the Voltage
and Current of Ullage Resistance R

From Fig. 1, we have uR = iR, iR = i. From Eq. (21), we obtain easily

T 〈(�i)2〉T = h̄

2Lω
τ−2 e− R

L
t coth

(
h̄ω

2kBT

)
, (25a)

T 〈(�u)2〉T = R2h̄

2Lω
τ−2 e− R

L
t coth

(
h̄ω

2kBT

)
. (25b)

4.3. The Quantum Fluctuations of the Voltage and Current Transformation
Relating with Time in Series Capacitance C

From Fig. 1, we have uR = iR, iR = i. Therefore, we obtain

T 〈(�iC)2〉T = h̄

2Lω
τ−2 e− R

L
t coth

(
h̄ω

2kBT

)
. (26)

From iC = C duC

dt
and iC = i, we obtain

T 〈(�u̇C)2〉T = h̄

2C2Lω
τ−2 e− R

L
t coth

(
h̄ω

2kBT

)
. (27)

4.4. The Quantum Fluctuations of the Voltage and Current Transformation
Relating with Time in Parallel Connection Capacitance C0

If taking iS(t) = 0, from Fig. 1, we have iC0 = −i., one has

u̇C0 = − i

C0
, (28)

therefore, the quantum fluctuations of the voltage and current transformation
relating with time in parallel connection capacitance C0 are

T 〈(�iC0)2〉T = h̄

2Lω
τ−2 e− R

L
t coth

(
h̄ω

2kBT

)
, (29)

T 〈(�u̇C0)2〉T = h̄

2C2
0Lω

τ−2 e− R
L

t coth

(
h̄ω

2kBT

)
. (30)
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5. CONCLUSIONS

Depending on the classical equations of motion, the mesoscopic quartz piezo-
electric crystal equivalent circuit is quantized by the method of damped harmonic
oscillator quantization. The quantum fluctuations of the voltage and current in
mesoscopic quartz piezoelectric crystal equivalent circuit each loop in the thermal
vacuum states are researched. The results show that (i) the quartz piezoelectric
crystal equivalent circuit is equivalent with quantum harmonic oscillator in the
mesoscopic conditions, (ii) the quantum fluctuations of the voltage and current of
each loop relating with not only the parameter of the equivalent circuit element but
also the temperature in the thermal vacuum states, the higher the temperature is,
the more quantum fluctuations exhibits, the lower the temperature is, the smaller
quantum fluctuations exhibits, (iii) because of ullage resistance R, the quantum
fluctuations of the voltage and current decay along with time.
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